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9.1.1 Thermodynamique statistique

@ Approche thermodynamique : dans une approche thermodynamique,
on considere des variables d'états macroscopiques (U,V,N) décrivant les
processus a |'échelle macroscopique. Ce faisant, on ignore les variables
d'état microscopiques (q1 ...qn, p1 ---pnN) décrivant les processus entre
constituants élémentaires a |'échelle microscopique.

Approche statistique : dans une approche statistique, on veut lier les
états microscopiques aux états macroscopiques. Pour ce faire, on définit
un ensemble statistique.

Ensemble statistique : une collection d’'états microscopiques qui
coincident avec les états macroscopiques dans lesquels le systeme est
susceptible de se trouver compte tenu des contraintes extérieures
imposées sur le systeme (états accessibles).

© Ensemble microcanonique : systeme isolé : (U,V,N) constants
© Ensemble canonique : systeme fermé et rigide : (V,IN) constants

© Ensemble grand-canonique : systéme ouvert et rigide : (V') constant

Dr. Sylvain Bréchet 9 Thermodynamique statistique



9.1.2 Descriptions macoscopique et microscopique

@ Description macroscopique : la quantité de matiere est décrite en
termes de moles N 4 = 6.022 - 10?3 de constituants élémentaires
(particules : molécules ou atomes).

@ Description microscopique : la quantité de matiére est décrite en
termes de particules.

@ Approche microscopique : on remplace les moles de particules par les
particules. Il faut alors remplacer la constante des gaz parfaits R par la
constante de Boltzmann kg ot R = N4 kp.

@ Descriptions : microscopique et macroscopique

N R— N kg ot R=Naikg (9.1)

moles particules

@ Equation d’état : du gaz parfait constitué de NV particules

pV = NkgT (9-2) |
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9.2.1 Entropie d’un mélange de gaz parfaits

Etat initial i Etat final

90|00 O|@O
90|00 L J@){ _
90|00 Ol@O
90|00 L)

@ Systeme isolé : processus : gaz parfaits 1 et 2 mélangés a température
1" et pression p constantes.

9000
Q0|00
Ol0I0I0
9000
0e0e

0@0®
L@ J©)

o Ensemble microcanonique : systeme isolé : (U,V,N) constants

e Etat initial ¢ : gaz parfaits distincts 1 et 2 a température 1" et pression p
séparés par une paroi mobile et diatherme.

©Q Volumes : V] et 15
@ Nombres de particules : N et No

e Etat final f : mélange homogene de gaz parfaits 1 et 2 a température T’
et pression p sans paroi (apres diffusion).

Q Volume:V =V; + V15
@ Nombre de particules : N = Ny + N>
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9.2.1 Entropie d’un mélange de gaz parfaits

e Variations d’entropie : processus isotherme (5.93) gaz parfaits : (9.3)

v
A5177;_>f = N1 kg In (‘(/Lf) = N1 kg In (;) — —Ni kg In (71) > 0

1,i 1
Vot V Vo
ASy i r=Nokpl = | =NokpIn|— )| =—NokpIn|{—=] >0
2,i— f 2 BH<V2J_) 2 BD(VQ) 2 Bl’l(v>

@ Variation d’entropie totale : processus de mélange isotherme

ASir=AS1 5 +ASs

Ny Vi No Vs (9.4)
= — — In (| — — In | —
NkB(N n(v)+N n(v))>0
@ Volumes initiaux : gaz parfaits
N1 kT No kT
V]_ p— 1MB et V2 — 2B (95)
p p
@ Volume final : gaz parfaits
N1+ No)kpT  NkpT
Vevvp e Wit N kel Nk (9.6)

p p
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9.2.1 Entropie d’un mélange de gaz parfaits

e Variation d’entropie totale : (9.5) et (9.6) dans (9.4)

N N N N
ASiL ¢ =—Nkg (Wl In (Wl) + WQ In (WQ)) > 0 (9.7)

ou AS;_, ¢ est la variation d’'entropie due au mélange des gaz parfaits.

o Extensivité de I'entropie : gaz parfaits

S(T,p,Ni,N3) =51 (T,p, N1) + 52 (T,p, N2) + AS; .y (N1,N2) (9.8)
o Troisieme principe : (5.31) entropies initiales a température nulle

lim Sy (T,p,N1) =0 et lim Sy (T,p, N2) =0 (9.9)
T—0 T—0

e Troisieme principe : (5.30) et (9.9) entropie finale a température nulle

S (Nl, NQ) — ’_ZI}LHO S (T,p, Nl,NQ) — ASZ_>f (Nl, NQ) (910)
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9.2.1 Entropie d’un mélange de gaz parfaits

o Entropie : a température quasi nulle (9.7) dans (9.10)

S (N1, Na) = — N kg (% In (%) + % In (%)) (9.11)J

Lorsqu’on fait tendre la température 1" d'un mélange de gaz parfaits vers
0, I'entropie S dépend ne plus de la pression p ou de la température 1T’
car pV = N kg T. L'entropie S (N1, N2) est uniquement une fonction
des nombres de particules N7 et Ny de gaz parfaits 1 et 2.

Entropie : (9.11) remis en forme

S(Ni,No) = kg (NyIn N+ NoIn N — NyIn Ny — NolnNo)  (9.12)
Entropie : (9.12) remis en forme avec N = N7 + N> : (9.13)
S(Ny,No) = kg (NInN — N — NyIn Ny + Ny — Noln Ny + No)

Afin de pouvoir interpréter statistiquement |'entropie (9.13), il faut
I'exprimer en termes de factorielles grace a I'approximation de Stirling.
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9.2.2 Approximation de Stirling

@ Fonction Gamma : généralisation de la factorielle : I' : R, — R4
F(x—l—l):/ £7 et dt (9.15)
0

@ Propriétés : pour n € N : factorielle
'(n+1) =n! et '(n+1)=nl(n) (9.16)

e Approximation de Stirling : si x € R, est suffisamment grand
ln<F(x+1))Elnx!2xlnx—x (9.17)

A

10°1

Dr. Sylvain Bréchet 9 Thermodynamique statistique



9.2.2 Approximation de Stirling

e Approximation de Stirling : si x € R, est suffisamment grand
Inz!~zlnx — x (9.17)

@ Approximation de Stirling : si n € N est suffisamment grand

Inn!~nlnn—n (9.14))

o Entropie : (9.13)

S(N1,No)=kp(NInN — N — NiInNy+ Ny — Naln Ny + N»)
e Entropie : dans la limite des grands nombres (9.14) dans (9.13)

S (N1,N2) =kp (InN!— In N;! — In N5!) (9.18)
o Entropie : (9.18) remis en forme ou N = N; + Nj

N
S(Nl,NQ) :kBln (Nl'N2'> (919)J

L'argument du logarithme est la combinaison de N7 particules de gaz
parfait 1 et de N, particules de gaz parfait 2 parmi N = Ny + N
particules de gaz parfaits donnant lieu a une interprétation statistique.
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9.2.3 Entropie d’'un gaz parfait

Etat initial i Etat final £

@ Systeme isolé : processus : détente de Joule d'un gaz parfait 1 a
température 1" et pression p constantes.

e Ensemble microcanonique : systeme isolé : (U,V,N) constants

e Etat initial 2 : gaz parfait a température T' et pression p séparé d'un
sous-systeme vide par une paroi mobile et diatherme.

© Volumes : Vi (gaz) et V; (vide)
© Nombres : N; (particules) et Ny (espaces vides)

o Etat final f : gaz parfait homogeéne (mélangé au vide) a température T
et pression p sans parol.

Q Volume:V =V; + V15
© Nombre total : N = N; + N>
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9.2.3 Entropie d’'un gaz parfait

Etat initial i Etat final £

@ Entropie initiale : somme des entropies dans les sous-systemes
(particules et vide)

Si (N1, N2) = S;1 (N1,0) + Si2 (0, Na)

Ny ! Ny! (9.21)
= kg ln (NﬂO!) + kg ln <N2!O!) =0

o Entropie : (9.19)

N
S(Nl,NQ):Sf (Nl,NQ)— Sz (Nl,NQ):th’l (922)
N1!Ns!
L'argument du logarithme est la combinaison de N; particules de gaz
parfait 1 et de N, particules de gaz parfait 2 parmi N = Ny + N
particules de gaz parfaits donnant lieu a une interprétation statistique.
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9.2.4 Etats microscopique et macroscopique

e Etat microscopique, ou micro-état : état dans lequel toutes les
particules sont discernables. Si on permute deux particules identiques ou
différentes, on modifie |'état microscopique.

e Etat macroscopique, ou macro-état : état dans lequel les particules
d'un gaz parfait sont indiscernables. Si on permute deux particules
identiques, on ne modifie pas |'état macroscopique. Si on permute deux
particules différentes, on modifie I'état macroscopique.

Dr. Sylvain Bréchet

Etat macroscopique identique

00000 *~00000
0000000000

Etat macroscopique différent

00000~ 00000
00000——00000
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9.2.4 Etats microscopique et macroscopique

Postulat fondamental : dans un systeme isolé, tous les micro-états ont
la méme probabilité de se réaliser dii aux fluctuations qui sont un
processus aléatoire. Les micro-états (accessibles) ont donc une
distribution de probabilité triviale.

1
p(N) = N
Distribution de probabilités : les macro-états ont des probabilités

différentes de se réaliser. Les macro-états ont donc une distribution de
probabilité non triviale.

(9.20)

Nombre de configurations : ) : nombre de macro-états.

Systéme : N; particules de gaz parfait 1 et de Ny particules de gaz
parfait 2 : N = N1 + Ns.

Nombre de configurations : nombre de combinaisons de Ny de
particules parmi N = Ny + N, particules ou les [Ny particules de gaz 1 et
les Ny particules de gaz 2 sont séparément indiscernables.

L) = Nlj!VJ!VQ! ~ N (NNi N (J]\D (9'23)J
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0.2.5 Loi binomiale

250
210 210
200
150
120 120
100
45 45

50

2 R .
0 : : : : : : : N,

0 1 2 3 4 5) 6 7 8 9 10

@ Nombre de configurations :

N! N! N
Q(N = 2
S AT TN (N = Ny)! (N1> (9.23)

® Nombre de configurations total : (9.24)

Z Q(Ny) = i (]]\X):g_: (]]\\[[1)1N11N—N1=(1+1)N=2N

N1=0 N1=0
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0.2.5 Loi binomiale

p(£2) Q(N,) N=10

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.246

0.205 0.205
0.117 0.117
0.044 0.044
0.001 0.010 0.010 0.001
4 5 6 7

0 1 2 3 8 9 10

@ Loi binomiale : probabilité que le systeme ait €2 configurations

Q(N7) 1 N 1 N!
0) — _ _ 2
p (&) N oN <N1) 2N Ny (N — Np)! e
> Q)
N;=0 )
@ Condition de normalisation :
al 1 < /N 9N
_ Ni1N—-N1 _ _
> P =ox >, (Nl)l NN = T = (9.26)

N1=0

N1=0
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9.2.5 Expérience - Planche de Galton

@ Planche de Galton : on libere des billes identiques au centre d'un
compartiment supérieur. Elles sont déviées dans leur chute de maniére
aléatoire par un réseau de clous disposés de maniere réguliere et
symétrique. Elles terminent leur chute dans une série de compartiments.
Le jeu télévisé The Wall utilise une planche de Galton.

@ Distribution : la répartition des billes dans les compartiments illustre la
loi de distribution de N7 molécules de gaz parfait 1 parmi N = Ny + Ns
molécules d'un mélange de gaz parfaits 1 et 2 (profil binomial).
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9.2.6 Entropie de Boltzmann

o Entropie et nombre de configuration : (9.19) ou (9.22) et (9.23)

N! N!
S(Nl,NQ) = kBlIl( )

£t Q(Ny) =
NARA © (N1) NARA

o Entropie de Boltzmann : (9.23) dans (9.19) ou (9.22)

S(Q) = kpnQ (9.27) |

L'entropie S est une grandeur additive et le nombre de configurations 2
est une grandeur multiplicative (9.17). Ainsi, S et () sont liés par un
logarithme. La constante de Boltzmann kg est un quantum d’entropie.

o Evolution des configurations : état initial ¢+ — f état final : (9.31)
ASip =S¢ (Qf)— S (£2) 20 ainsi Qr > Q, (isolé)
e Evolution des configurations : état initial ¢ — f état final : (9.32)

Qr =Q, (réversible) et Qr > (irréversible)
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9.2.6 Expérience - Entropie de mélange de boules

\ i

e Etat initial : on place N; boules blanches dans un compartiment et N,
boules noires dans un autre compartiment séparés par une grille
métallique. L'entropie initiale .S; des boules blanches et noires séparées
est nulle (indiscernabilité des boules : un seul macro-état).

Ny! No!
S =kpln(M)+kpln(Q) =kpln [ == | +kgln ( == ) =0 (9.28)
Ny! No!

e Etat final : en enlevant la grille, les boules se mélangent et |I'entropie
finale Sy est I'entropie de mélange (processus irréversible).

N

114V9!

Sf — kBln(Qf) = kBIIl<
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90.3.1 Loi multinomiale

@ Ensemble canonique : une collection d'états microscopiques qui
coincident avec les états macroscopiques a volume constant V', a nombre
constant de particules V.

@ Niveaux d’énergie : on considere un systeme fermé, rigide et diatherme
avec n niveaux d'énergie discrets U; ou 2 =1, .., n.

@ Nombre total de particules fixe : le nombre de particules N; de chaque
niveau d'énergie interne U; peut varier, mais le nombre total de particules
N est fixe.

N =N (N1, ..,Ny) = N; =cste (9.33)
1=1

@ Energie interne totale : les particules peuvent changer de niveau
d’'énergie interne U, et |'énergie interne U peut varier dii au transfert de
chaleur avec le réservoir.

U=U(Ny,.,No)=> N;U, (9.34)
1=1
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90.3.1 Loi multinomiale

@ Nombre de configurations : de N particules dans n niveaux d’'énergie
U, : (9.23) généralisée avec n types de permutations (indiscernabilité)

N N
le"“’N“):Nl!...Nn!:(Nl...Nn) (9.35)

@ Nombre de configurations total : (9.36)

Z Q(Ni,...,Ny)= > (NlNN>1N1...1Nn:nN

Ni,.. Ni,...,Np
Ni+.. —I—N =N Ni+...4+N,=N

@ Loi multinomiale : probabilité que le systeme ait {2 configurations

Y Q@y,...,N,) Y Nl N
N1i,...,Np,
Ni+...4+N,=N J

e Condition de normalisation : (9.38)

_ N No N, MY
>, r@=—F% > (Nl,,,N)l ol =os =
Ni,....N, Ni,....N,
Ni+..+N,,=N Ni+..+N,=N
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9.3.2 Entropies de Gibbs et de Shannon

@ Nombre de configurations : N particules dans n niveaux d’énergie U;

QN Na) = 573 N' . (9.35)
o Entropie de Boltzmann : (9.35) dans (9.27)
N
S=kplnQ=kpgln (Nll...Nn!) (9.39)
o Entropie de Boltzmann : (9.39) remise en forme
S=kpInN!— kg z”: In V! (9.40)
i=1

@ Approximation de Stirling :
Inn! ~nlnn — n (9.14)
o Entropie de Boltzmann : (9.14) dans (9.40)

S=kg(NInN — N)— kg ¥ (N;InN; — N;) (9.41)

1=1
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9.3.2 Entropies de Gibbs et de Shannon

e Entropie de Boltzmann

: (9.41)

e Entropie de Boltzmann :

1=1

(9.41) remise en forme

S=kzNInN — kg Z N, In N,

o Probabilité

@ Entropie de Boltzmann :

1=1

: particule d'énergie interne U,

S=kgNInN — kg zn: Np(Ui)In (Np(Ui))

Dr. Sylvain Bréchet
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9.3.2 Entropies de Gibbs et de Shannon

o Entropie de Boltzmann : (9.44) version développée : (9.45)

S=kpNInN — kg NInN ip(U@') ~ kg N En:p(Uz-)ln (p(Uz'))
1=1

1=1

@ Condition de normalisation : probabilités
> pUi) =1 (9.46)
i=1

o Entropie de Gibbs : (9.46) dans (9.45)

S=—Nkg Z p(U;)In (p(Uz)) (9'47)J

@ Théorie de l'information : I'entropie de Shannon est une grandeur sans
dimension qui quantifie I'information d'une variable aléatoire x; binaire.

@ Entropie de Shannon :

H=— zn: p () logs (p () (9.48)}
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9.3.3 Distribution canonique

Distribution canonique : cette distribution est définie lorsque les NV
particules sont a |I'équilibre dans les n niveaux d'énergie interne.

Etat d’équilibre : d'aprés la condition d'équilibre du deuxiéme principe,
I'entropie S est maximale compte tenu des contraintes imposées par le
nombre total IV de particules et |'énergie interne totale U a |'équilibre.

Fonction de Lagrange : décrit I'entropie S sous contraintes : (9.49)

L(S,{N:}) =8 — akg (zn: N; — N> — Bkg (zn: N, U; — U)

i=1
ou « et [ sont appelés multiplicateurs de Lagrange.

Extréma de la fonction de Lagrange : (9.49)

0L (S, {N;}) =65 — akp » 6N;— Bkp » U;6N; =0 (9.50)
i=1 i=1

Variation de I'’entropie de Boltzmann : (9.42) donne (9.51)
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9.3.3 Distribution canonique

@ Variation de lI'entropie de Boltzmann :

58 = —kp i:(ln N; §N; + N; 6 (In N@-))

@ ldentité variationnelle :

e Variation de I'entropie de Boltzmann : (9.52) dans (9.51)

1=1

ON;;
N;

1=1

e Extréma de la fonction de Lagrange :

0L (S, {N;}) =6S— akp Y 6N;— Bkp » _ U;6N; =0

o Extréma liés : (9.53) dans (9.50)

—kp Y (InN;j+1+a+BU;)0N; =0

1=1
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9.3.3 Distribution canonique

e Condition : (9.54) doit étre satisfaite pour tout 6 V;

l+InN;,+a+ U, =0 (9.55)
@ Nombre de particules : d'énergie interne U; (9.55)

N; = ¢~ (I+e) o= BU: (9.56)
o Probabilité : particule d'énergie interne U; (9.43)

N; e~ PUi

p(Ui) = N Nelto (9.57)
@ Nombre de particules total : (9.56)

N=> Nj=e TN "0l (9.58)

j=1 j=1
e Distribution canonique : (9.58) dans (9.57)
6_ BUz
p(U;) = — (9.59)
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9.3.4 Fonction de partition et énergie

@ Fonction de partition canonique : pour une particule

7 zn: e~ BU; (9.60)}

e Distribution canonique : (9.60) dans (9.59)

p(U;) = ~ (9.61)J

o Rapport de probabilités des niveaux d’énergie interne : (9.61)

D (Uz) e BU;
p(;) e 7T (9-6”}

o Energie interne : ensemble canonique (9.61) et (9.43) dans (9.34)

U = ZNU ZNUZp ZU@ Us (9.63)J

Dr. Sylvain Bréchet 9 Thermodynamique statistique



9.3.5 Température et énergie libre

@ Entropie de Gibbs :

@ Entropie de Gibbs :

1=1

(9.61) dans (9.47)

n
Z

1=1

(9.46) et (9.63) dans (9.64)

S:kB(Nan—FﬁU)
e Température : (9.65) dans (2.16)

_kB

9
oU

Nan—FﬁU):kBB

e Multiplicateur de Lagrange : (9.66)

1_ 058
T~ 8U

1
B=tnT

(9.64)

(9.65)

(9.66)

(9.67)J
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9.3.5 Température et énergie libre

@ Entropie de Gibbs :

S:kB(Nan—FﬁU)

@ Multiplicateur de Lagrange :

1

BZkBT

o Energie interne : (9.67) dans (9.65)

U=TS— NkgT InZ
o Energie libre : (4.7)

F=U-TS

o Energie libre : (9.68) dans (9.69)

F'=—-—NkpT InZ

(9.65)

(9.67)

(9.68)

(9.69)

(9.70))
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9.4 Distribution de Maxwell-Boltzmann

9.4 Distribution de Maxwell-Boltzmann

94.1
9.4.2
9.4.3
94.4
9.4.5
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Systéeme discret de particules libres
Milieu continu de particules libres
Distribution des quantités de mouvement
Distribution de I'énergie

Distribution de la vitesse
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9.4.1 Systeme discret de particules libres

@ Systeme discret : N particules libres de masse identique m réparties sur
n niveaux d'énergie E; ou i1 =1, ..,n.

@ Energie interne : |'énergie interne macroscopique U du systeme est la
somme des énergies cinétiques microscopiques F; des N; particules libres
réparties sur les n niveaux d'énergie.

1=1 1=1

@ Probabilité : particule sur le niveau d'énergie E; : distribution canonique

Ni e PE;
E;) = — = 9.120
p(E) = — > ( )

e Energie cinétique : d'une particule sur le niveau d'énergie E;

p; _ Pix + Py t+Pi

E; =
2m 2m

(9.121)

e Probabilité : particule de quantité de mouvement p; = (pix, Diy, Diz)

1 Doy + D5, + D
p(pm,pz’yapz‘z) = — €XD <— ? > (9.122)

A kaBT
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9.4.2 Milieu continu de particules libres

@ Milieu continu : continuum de particules libres de masse identique m et
de quantité de mouvement p qui varie continument.

@ Fonction de distribution : probabilité d'avoir une particule de quantité
de mouvement p = (p, Py, P-) : généralisation de (9.122)

1 P2+ pi + p2
€T s Mz — = - 9123
f (Pzy Dy, D) Z) eXp< kT ( )

@ Condition de normalisation : somme continue de probabilité

—+ o0 —+ 00 —+ o0
/ / / f (Pzs Dy, p2) dpe dpy dp, =1 (9.124)

@ Paramétrisation : pour obtenir la fonction de distribution de la norme
des quantités de mouvements, on remplace les coordonnées cartésiennes
par les coordonnées sphériques dans |'espace de phase.

1 p?
= i) yPz) — & T 12
f(p) = f (P Dy p2) 7, P ( kaBT) (9.125)
@ Changement de variables : volume infinitésimal de |'espace de phase
dp, dp, dp, = p* dp sin 6 df dy (9.126)
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9.4.2 Milieu continu de particules libres

@ Volume infinitésimal : espace de phase

dp dp, dp, = p* dp sin 6 df dy (9.126)
P- A
dp 7\
pdd—7"Y7
0 Y /N
a0
0 <. : E > Dy
%, S~
P AN
psin 6 dp

o Angle solide d’une sphére : 6 € [0,7) et ¢ € [0,2m)

U 2
/ sin 6 df / dp = 47 (9.128)
0 0
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9.4.3 Distribution des quantités de mouvement

o Condition de normalisation : (9.125) et (9.126) dans (9.124)

00 T 27
/ f (p) p*dp / sin 6 d0 / dp =1 (9.127)
0 0 0

o Condition de normalisation : (9.125) et (9.128) dans (9.127)

°° 4r p? 5
—— _ dp = 1 9.129
/O 7 eXP( zkaT) p~dp ( )

e Constante de normalisation : (9.129) remis en forme

o0 2
p 3/2
Ly = /O 47Tp2 exp (— 2mk3T> dp = (QWm]CBT) / (9130)

e Condition de normalisation : fonction de distribution f, (p)

/O T ) dp=1 (0.131)

Dr. Sylvain Bréchet 9 Thermodynamique statistique



9.4.3 Distribution des quantités de mouvement

e Fonction de distribution : (9.130) dans (9.129) et (9.131)

1 3/2 , p2
_ 4 — 9.132
o) = (gmr) 4 e (- ) ( )J

f(p)
A mkgT

S5mkyT

25mkyT

_> p
@ Dispersion : 0, = vmkpT augmente si T' ou m augmente
© Regroupement : o, = Vmkp1T diminue si T ou m diminue
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9.4.4 Distribution de I'énergie

@ Fonction de distribution : de la quantité de mouvement

1 3/2 , p2
= 4 — 9.132
Jo (P) (27kaBT> npeEp ( 2mk3T> ( )

e Energie cinétique : (9.121) milieu continu

2

E=2" ainsi p?=2mE et p=+2mE (9.134)

2m

@ Dérivée de la quantité de mouvement :

dp m
— =/ == 0.135
dE \ 2E ( )

@ Probabilité : volume infinitésimal de |'espace de phase

fE (E) dE = f, (p) dp (9.136)
e Fonction de distribution : énergie (9.135) dans (9.136)

o (B) = 22 ) = \ o2 o (VamE ) (0.137)
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9.4.4 Distribution de I'énergie

Jo(E)
A
kT
3k, T
9k, T
x\‘ >
@ Dispersion : o = kT augmente si T augmente

@ Regroupement : o = VkpT diminue si T" diminue
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0.4.5 Distribution de la vitesse

@ Fonction de distribution : de la quantité de mouvement

1 3/2 ; p?
T (p) = (27Tm]€BT) dmp” exp (_ kaBT) (9.132)

o Vitesse :
p=muv (9.140)

@ Dérivée de la quantité de mouvement :

dp _

— 9.141
oo =m (9.141)

@ Probabilité : volume infinitésimal de |'espace de phase

fo (v) dv = [, (p) dp (9.142)

e Fonction de distribution : vitesse (9.141) dans (9.142)

fo () = == fp (p) = m fp (mv) (9.143)
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0.4.5 Distribution de la vitesse

e Fonction de distribution : (9.132) et (9.140) dans (9.143)

3/2 2
- m . o
f@) = () am? e (= ) 0140
fv)
| R—

@ Dispersion : o, = 4/ % augmente si T augmente ou m diminue

koT .. . ..
© Regroupement : o, = 1/ ~E= diminue si T' diminue ou m augmente
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9.4.5 Expérience - Appareil de jet statistique

@ Des billes métalliques dans une boite sont mises en mouvement grace au
mouvement d’oscillation rapide de la plaque inférieure de la boite. Elles
effectuent des collisions élastiques entre elles et avec les parois de la
boite.

@ Un petit trou sur le coté de la boite laisse s'échapper les billes qui
terminent leur course dans des compartiments de largeur identique.

@ La répartition des billes dans les compartiments se fait selon leur vitesse
d’'éjection a la sortie du trou. Cette répartition suit une distribution de
Maxwell-Boltzmann de la vitesse.
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0.4.5 Distribution de la vitesse

e Vitesse la plus probable : qui maximise f, (v) (9.145)

df, (v) m \*? mu? mu?
— _ —1)=0
dv (zkaT) ST X\ “ o7 ) \2kpT

2%k T
& (9.147)
m

o4

e Vitesse moyenne :

(v) = / v fo (V) dv (9.149)
0
/ OO — 3/24 e d Skl
= V3 ex v =
o \27kpT i QkBT m
@ Vitesse quadratique moyenne : </ (v?)

(v?) = /OOO v? fo (V) dv (9.151)
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9.5 Théorie cinétique des gaz

9.5 Theéorie cinétique des gaz
9.5.1 Energie cinétiqgue moyenne
9.5.2 Gaz parfait dans une boite
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9.5.1 Energie cinétique moyenne

@ Systéme : continuum de particules libres de masse identique m et de
vitesse de norme v qui varie continument.

e Energie cinétique moyenne :

1 1
<E>:<§mv2>:§m(v2> (9.153)
e Vitesse quadratique moyenne :
3kpT
(v?) =22 (9.151)
m

o Energie cinétique moyenne : (9.151) dans (9.153)

1m<v2> _ %kBT (9.154)J

L'équation (9.154) n'est valable que pour un gaz de particules avec 3
degrés de libertés (atomes).

@ Température : la température 1" d'un gaz macroscopique de particules
libres est une mesure de |'agitation moléculaire microscopique (v ).

9 Thermodynamique statistique

Dr. Sylvain Bréchet



9.5.2 Gaz parfait dans une boite

@ Systeme : gaz parfait de N particules libres qui effectuent des collisions

élastiques avec les parois d'une boite cubique d'arréte L et ont un
mouvement rectiligne uniforme entre deux collisions.

@ Particule : mouvement rectiligne uniforme selon |'axe horizontal Ox

© Condition initiale : z(0) =0 et v, (0) =v; >0

2
© Condition finale : x (At) =0 et vy (At) = —vy, <0

A
@ Collision élastique : (—t> =L

@ Force : F. exercée par la particule sur la paroien x = L

@ 3° loi de Newton : force — F,. exercée par la paroi sur la particule

t=20 t= At
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9.5.2 Gaz parfait dans une boite

t=20 t= At

O} > I 10X > T

2€ loi de Newton : durant un aller-retour

Ap,

At

Collision élastique : variation de la quantité de mouvement

Ap, = pz (At) — pe (0) = mo, (At) — mo, (0) = —2mu, <0 (9.158)

—F, = (9.157)

Durée : d'un aller-retour
2L

At 9.159
5 (9.159)
Force : (9.158) et (9.159) dans (9.157)

2
F, = e (9.160)

L
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9.5.2 Gaz parfait dans une boite

t=20 t= At

Ot > O > T

@ Force moyenne : exercée par les N particules sur la paroi (9.96)

N
(F)=N(E,)="m(2) (9.161)
@ Gaz : homogeéne et isotrope
(v*) = (vz) + (vg) + (vZ) =3(vz) (9.162)
o Pression : exercée sur la paroi d'aire L? (9.161) et (9.162)
(Fy) 1N ., 1IN
= = - =-= 164
p="rl =2 Som (i) = 5 m(v) (9.164)

e Equation d’état du gaz parfait : (9.164) dans (9.154)

pV = N kgT (9.165) |
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9.6 Théoreme d’équipartition de I'énergie

9.6 Théoreme d’équipartition de I'énergie
9.6.1 Théoreme d’équipartition de I’énergie
9.6.2 Gaz parfait
9.6.3 Solide
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9.6.1 Théoreme d’équipartition de I’énergie

@ Energie : molécule de gaz parfait avec v degrés de liberté I'¢,...,T",

v

1
E(Ty,....T)) = Z 5 o F? ol o; = cste > 0 (9.166)}
i=1

@ Condition de normalisation : distribution de probabilité canonique

— BE(T,....,I'))
/ / dly ...dT, = 1 (9.167)

@ Intégration par parties : par rapport a I';

> ¢~ PE e~ PE | * T, Qe PE
dl'; =T, — dl’; 0.168
[ = 7 | 7" (9:165)

e Condition aux limites : (9.163)

00 o

e~ PE

A

I';

0

v
v H 6_6(%053':?)

T
_ 1
- 0 (9.169)

g=1
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9.6.1 Théoreme d’équipartition de I’énergie

Intégrant : (9.168)

[; Oe PE I  OF e~ PE

! == —PE — _ B, T? 9.170
Z o, 7P ar, € paili = (9.170)
Intégration par parties : (9.169) et (9.170) dans (9.168)

Y 9.171

= T ; 17

| = | et (9.171)
Condition de normalisation : (9.171) dans (9.167)

00 00 e~ BE(T'1,...,'))
/ / Bo;T? dl'y...dTl', =1 (9.172)
0 0 Z

Théoreme d’équipartition de I'énergie : (9.172) donne (9.173)

©9 = e_BE(Flaorl/) 1
ai<F?>:ai/O /O I? Z dFl...dFV:E:kBT

J

Interprétation : |la valeur moyenne des carrés de chaque degré de liberté
a; (T'?) apporte une contribution kgT a |'énergie moléculaire moyenne.
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Dr. Sylvain Bréchet

9.6.1 Théoreme d’équipartition de I’énergie

@ Energie moléculaire moyenne : somme des moyennes des degrés de

liberté au carré (T'?) multipliés par a; /2.

1 5 v
(B(Ty,T0) =30 S ai(TF) = & kT <9.175)}
1=1
© Molécule monoatomique : v =3 : {vi,v2,vs}
3
1
(B)=3" 2 m(o?)
i=1
© Molécule diatomique rigide : v =5 : {vi,v2,v3, w1, w2}
3 2
_ 1 2 1 2
(E) _; im(vi>—|—; 51 (w
© Molécule polyatomique rigide : v =6 : {vi,v2,v3,w1,ws,ws}
3 3
1 2 1 2
(E) :; §m<’0¢>+; 5L-<w
© Molécule diatomique vibrante : v="7: {v1,v2,v3, w1, w2, T — T, T}
3
1 :
<E>=Z§m Z I{w;)+ 5 k((?“—"“o)2>+—u<7“2>

2
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9.6.2 Gaz parfait

Gaz parfait : I'énergie interne du gaz parfait est uniquement due au
mouvement de N molécules. Donc, |'énergie interne U est N fois
I'énergie moléculaire moyenne ( F ).

Energie interne : (9.175)

U:N<E>:gNkBT ol c:g (9.181)J
Equation d’état du gaz parfait :
pV = NkpT (9.165)

Enthalpie : (9.181) et (9.165) dans (4.29)

H=U+pV = (g+1)NI<:BT (9.182)J

Capacités thermiques : isochore et isobare

oU

Y _ 0H
- oT

14
——Nk‘B et Cp_a_T

Cy 5

» 2

= (5 +1) Nks (9.183)}
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9.6.3 Solide

@ Solide : on modélise un solide comme un réseau cubique d'oscillateurs
harmoniques de constante élastique k entre /N atomes de masse m.

y

@ Degrés de liberté : v =06 par atome

)

iy

© Translation : 3 : {vi,v2,vs}

e

© Vibration : 3 : {z1 — z10,22 — 220,23 — T3,0} o
5~ (D

o Energie interne : (9.175)

U=N(E)=3NkgT (9.184)
o Enthalpie : (4.29)
H=U+pV =3NkgT+pV (9.185)

e Solide indéformable : o, =0 : (5.7), (5.11) et (5.12)

d(pV) p(T.V) V(Tp)  a
5T 5T V + o7 P XTV—I—appV ( )
@ Loi de Dulong-Petit : capacité thermique atomique
oU OH
OC=— | =2"| —3NEk 0.188
or|, oT|, o ( )}
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9.7 Applications

9.7 Applications
9.7.1 \Variation de la pression atmosphérique avec l'altitude
9.7.2 Systéme magnétique a deux niveaux d’énergie
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9.7.1 \Variation de la pression atmosphérique avec I'altitude

@ Systeme : on modélise |I'atmosphéere comme un gaz parfait dont les
molécules sont soumises a |'attraction gravitationnelle terrestre. On
néglige |'énergie cinétique de rotation moléculaire.

Energie : I'énergie moléculaire F (v, z) est la somme de I'énergie
cinétique T (v) et potentielle gravitationnelle V' (z) par rapport a
I"altitude de référence z = 0 de la surface de la terre.

E(v,2z) =T (v)+V(z) = %va + mgz (9.189)

Fonction de distribution : des vitesses et des altitudes
e_ BE(’U,Z) 6_ BT(U) e_ BV(Z)

f(v,2) = 7 — 7. 7. = fu (v) [z (2) (9.190)

ou f, (v) est la fonction de distribution des vitesses (9.144), f, (z) est la
fonction de distribution des altitudes et 7 = Z, Z,.

@ Fonction de distribution : des altitudes

. (2) = _ (9.191)
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9.7.1 \Variation de la pression atmosphérique avec I'altitude

e Condition de normalisation : vitesses et altitudes (9.190)

/OOO/OOO f(v,z)dvdz:/ooo fo (v)dv /OOO f.(2)dz=1 (9.192)

@ Condition de normalisation : distribution de Maxwell-Boltzmann
/ £, (W) dv =1 (9.193)
0
e Condition de normalisation : (9.193) dans (9.192)

/OOsz(Z)dzzl

e Condition de normalisation : (9.191)

mgz

ey 0.19
=1 194
| G (9.104)
o Constante de normalisation : (9.194) fonction de partition
0 _ mgz kT
Z, = / e FBT (y = —2_ (9.195)
0 mg
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9.7.1 \Variation de la pression atmosphérique avec I'altitude

e Fonction de distribution : (9.195) dans (9.191)

mg __ Mg~z

e Rapport des nombres de molécules : (9.191) dans (9.59)
N(z) e PP0H f,(v) f2(2) _ 2 (2)

— — — 9.197

N(O) " e P £, (w) £.(0) £ (0) 2190
@ Nombre de molécules : a I'altitude z (9.196) dans (9.197)

N (z) = N (0) e *57T (9.198) |
e Rapport des pressions : gaz parfait (9.165) dans (9.197)

N (z)kpT N

p(z) _ N(2)ks V. _N({ (9.199)

p(0) V N(0)kgT N (0)
@ Pression : a l'altitude z (9.197) dans (9.199)

p(x) =p(0) e *a7 (9.200) |
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9.7.1 \Variation de la pression atmosphérique avec I'altitude

@ Variation de hauteur faible : approximation au 1°" ordre
mg= ~ T ~ 1 - 97 0.201

<1 alnsl e T
e Variation de pression faible : approximation (9.201) dans (9.200)

p(z)— p(0) ~ — Z;g; p(0) (9.202)

@ Masse volumique constante : approximation

N (0)m (9.203)

@ Loi de gaz parfait : altitude z =0

N(0)ksT pksT
O kT phs (9.204)

Y

p(0)=— -

o Loi de I'hydrostatique : (9.204) dans (9.203)

p(2) —p(0) ¥ —pgz (9.205) |
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9.7.1 Expérience - Variation de la pression atmosphérique

~]

|
- I ] ) B B
a1
ST

o
o
0

@ On mesure la pression atmosphérique a I'aide d'un capteur de pression
qu’on monte avec un treuil sur une hauteur de 6 m. La pression p (z) en
fonction de I'altitude z est représentée graphiquement.

@ Pour une faible variation de hauteur (z = 6 m) a température ambiante
(T = 293 K), la variation de pression est donnée par la loi de
I"hydrostatique,

p(z)—p(0)=—pgz=—-1.2-981-6 Pa=—70.6 Pa

ce qui signifie que la variation de pression est une fonction linéaire de
I"altitude. Ainsi, la norme de la pente constante du graphique correspond
a la densité de poids pg.
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9.7.2 Systeme magnétique a deux niveaux d’énergie

Systéme : on considere un systeme constitué d'un grand nombre
d'aimants permanents de moment magnétique p plongés dans un champ
d'induction magnétique B =B 2 ou B > 0.

Modele semi-classique : on suppose que les moments magnétiques p
des aimants ont une norme p constante et peuvent avoir deux
orientations (ou configurations) possibles :

@ Sens du champ B : p1=p12=p2z ou >0

Q Sensopposé auchamp B: pus=pu22=—puz ou u>0
Energie magnétique : d'un aimant de moment magnétique puq
Fi=—u - B=—mu1 B=—uB<0 (9.207)
Energie magnétique : d'un aimant de moment magnétique o
FEo=—ps-B=—pusB=uB>0 (9.208)

Fonction de partition : ensemble canonique

2
Z = Z e 8T —e *BT ¢ FBT (9.209)
i=1
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9.7.2 Systeme magnétique a deux niveaux d’énergie

BE ~ Ty
6_ 1 6 k:BT 6I€BT
p(El) — Z — . Eq L Eo5 — wB _ _uB (9210)

o Probabilité : aimant d’'énergie magnétique Fo (9.209) et (9.208)

BE T -
6_ 2 e kBT e kBT
p(EQ) — 7 — Eq Es  —  _uB ~ uB (9210)

e Valeur moyenne de I'énergie magnétique : (9.119)

2
(E)=) E;p(E;)=FE1p(E1)+ Exp(Es) (9.211)
1=1
e Valeur moyenne de I’énergie : (9.207) - (9.210) dans (9.211)
kMBT o kMBT B
(E)z—,uBeBB — E; = — 1 B tanh Ll (9.212)
uB_ _p ]{TBT
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9.7.2 Systeme magnétique a deux niveaux d’énergie

@ Valeur moyenne du moment magnétique :

Z Ui P = p1p (E1) + p2p (E2) (9.213)
e Valeur moyenne du moment magnétique : (9.210) u1 = —puo = p
k’UJB o kMB B
ekBT — e kBT §2:2
() =p —g——— 5 = K tanh (9.214)
kT

<>

A
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9.7.2 Systeme magnétique a deux niveaux d’énergie

@ Température élevée : approximation de Curie : uB < kgT

uB uB
tanh | —— | ~ —— 21
an <l<:BT> i T (9.215)

@ Loi de Curie : (9.215) dans (9.214)

() =7 <9.216)J
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